Projective reflection groups
نویسندگان
چکیده
منابع مشابه
Enumerating projective reflection groups
Projective reflection groups have been recently defined by the second author. They include a special class of groups denoted G(r, p, s, n) which contains all classical Weyl groups and more generally all the complex reflection groups of type G(r, p, n). In this paper we define some statistics analogous to descent number and major index over the projective reflection groups G(r, p, s, n), and we ...
متن کاملCombinatorial invariant theory of projective reflection groups
We introduce the class of projective reflection groups which includes all complex reflection groups. We show that several aspects involving the combinatorics and the representation theory of complex reflection groups find a natural description in this wider setting. Résumé. On introduit la classe des groupes de réflexions projectifs, ce qui généralises la notion de groupe engendré par des réfle...
متن کاملThe Deformation Theory of Discrete Reflection Groups and Projective Structures
We study deformations of discrete groups generated by linear reflections and associated geometric structures on orbifolds via cohomology of Coxeter groups with coefficients in the adjoint representation associated to a discrete representation. We completely describe a cochain complex that computes this cohomology for an arbitrary discrete reflection group and, as a consequence of this descripti...
متن کاملcharacterization of projective general linear groups
let $g$ be a finite group and $pi_{e}(g)$ be the set of element orders of $g $. let $k in pi_{e}(g)$ and $s_{k}$ be the number of elements of order $k $ in $g$. set nse($g$):=${ s_{k} | k in pi_{e}(g)}$. in this paper, it is proved if $|g|=|$ pgl$_{2}(q)|$, where $q$ is odd prime power and nse$(g)= $nse$($pgl$_{2}(q))$, then $g cong $pgl$_
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2011
ISSN: 0021-2172,1565-8511
DOI: 10.1007/s11856-011-0105-6